

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2012

YEAR 11 Mathematics Extension HSC Task #1

Mathematics Extension

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answers must be given in simplest exact form unless otherwise stated.

Total marks - 77

Section I (10 marks)

• Answer Questions 1-10 on the Multiple Choice answer sheet provided.

Section II (67 marks)

• For Questions 11-13, start a new answer booklet for each question.

Examiner:

D.McQuillan

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

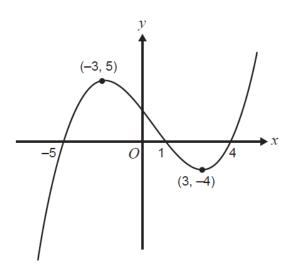
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

Section I (10 marks)

Use the multiple-choice answer sheet for Questions 1-10


- 1 What is the acute angle to the nearest degree between the lines y = 7 4x and 2x 3y 6 = 0?
 - (A) 26°
 - (B) 42°
 - (C) 70°
 - (D) 75°
- 2 When polynomial P(x) is divided by $x^2 + x 6$ the remainder is 7x + 13. What is the remainder when P(x) is divided by x + 3?
 - (A) –8
 - (B) -5
 - (C) 34
 - (D) 55
- 3 What is the exact value of $\cos 165^\circ$?

(A)
$$\frac{-\sqrt{2}-\sqrt{6}}{4}$$

(B)
$$\frac{-\sqrt{2}+\sqrt{6}}{4}$$

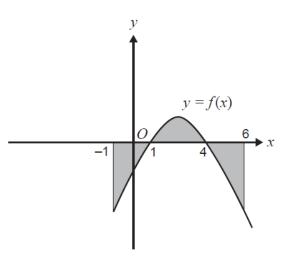
(C)
$$\frac{-\sqrt{6}-\sqrt{2}}{4}$$

(D)
$$\frac{-\sqrt{6}+\sqrt{2}}{4}$$

- 4 What are the coordinates of the point P that divides internally the interval joining the points A(1, 2) and B(7, 5) in the ratio 2:1 ?
 - (A) (3, 3)
 - (B) (3, 4)
 - (C) (5, 3)
 - (D) (5, 4)

5 What is the solution to the inequality $\frac{3}{x-2} \ge 4$?

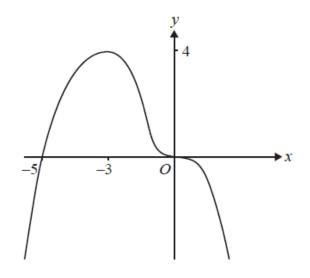
- (A) $x < -2 \text{ and } x \ge \frac{11}{4}$
- (B) $x > -2 \text{ and } x \le -\frac{11}{4}$
- (C) $x < 2 \text{ and } x \ge \frac{11}{4}$
- (D) $x > 2 \text{ and } x \le \frac{11}{4}$
- 6 The average rate of change of the function $f(x) = x^3 \sqrt{x+1}$ between x = 0 and x = 3 is
 - (A) 12
 - (B) $\frac{26}{3}$
 - (C) $\frac{25}{3}$
 - (D) 8

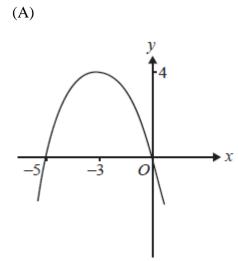

For the graph of y = f(x) shown above f'(x) is negative when

- (A) -3 < x < 3
- $(B) \quad -3 \le x \le 3$
- (C) x < -3 or x > 3
- (D) x < 5 or 1 < x < 4

8 Let f'(x) = g'(x) + 3, f(0) = 2 and g(0) = 1.

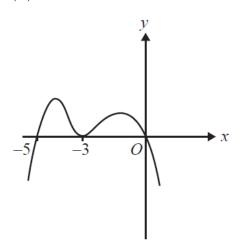
Then f(x) is given by

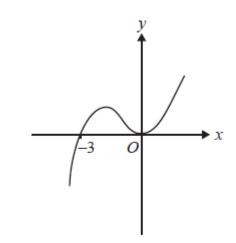

- (A) f(x) = g(x) + 3x + 1
- (B) f(x) = g(x) + 3x
- (C) f(x) = 1
- (D) f(x) = g'(x) + 3


The total area of the shaded regions in the diagram is given by

- (A) $\int_{-1}^{6} f(x) \, dx$
- (B) $\int_{-1}^{1} f(x) dx + \int_{1}^{4} f(x) dx + \int_{4}^{6} f(x) dx$
- (C) $-\int_{1}^{-1} f(x) dx + \int_{1}^{4} f(x) dx \int_{6}^{4} f(x) dx$
- (D) $\int_{1}^{-1} f(x) dx + \int_{1}^{4} f(x) dx + \int_{6}^{4} f(x) dx$

10 The graph of y = f(x) is show below.


Which of the following could be the graph of the derivative function y = f'(x)?



(C)

(D)

Section II

Start a new writing booklet for each Question in section II

[4]

[4]

[4]

Question 11 (21 marks)

(a) Find
(i)
$$\int (5 - 2x + 6x^2) dx$$
(ii)

$$\int \sqrt[3]{x} \, dx$$

(iii)
$$\int \frac{5x^4 + x - 4}{2x^6} dx$$

(b) Solve
(i)
$$\frac{4}{|x-1|} > 1$$

(ii)
$$\frac{4}{(x-1)^2} > 1$$

(c) Given
$$P(x) = x^3 - x^2 - 3x - 1$$

(i) Evaluate
$$P(-1)$$
.

(ii) Hence solve P(x) = 0.

(d) The roots of $x^3 - 4x^2 - 9 = 0$ are α, β, γ . Find the value of

- (i) $(\alpha + \beta + \gamma) \alpha \beta \gamma$
- (ii) $(\alpha + 2)(\beta + 2)(\gamma + 2)$

(e) Prove that

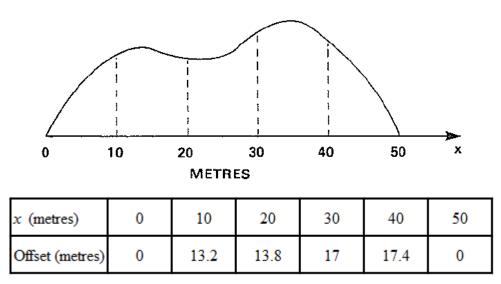
[2]

[4]

$$\frac{1 - \cos 2A}{1 + \cos 2A} = \tan^2 A$$

- (f) Sketch the graph of a function that satisfies all of the given conditions. [3]
 - f'(5) = 0
 - $\lim_{x\to 3} f(x) = -\infty$
 - f'(x) < 0 for x < 3 and for x > 5
 - f'(x) > 0 for 3 < x < 5

End of Question 11


Start a new writing booklet for each Question in section II

Question 12 (23 marks)

(a) During a survey the area of an irregular headland was to be found. The surveyor used a base line divided into five equal sub-intervals, each of width ten metres. Offset measurements f(x) were taken at each value x across the base line and tabulated as below

[3]

[4]

Use the trapezoidal rule to find the approximate area of the headland.

(b)

(i) Rewrite $2\cos x + \sqrt{5}\sin x$ in the form $R\cos(x - \alpha)$.

(ii) Hence solve $2\cos x + \sqrt{5}\sin x = 2$ for $0^\circ \le x < 360^\circ$, to the nearest degree.

(c) Sketch
$$y = x^4 - 6x^2 - 8x + 1$$
 showing all stationary points. [5]

(d) If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, how small can f(4) possibly be? [2]

(e) Find the general solution of $\cos 2x = \frac{1}{2}$ (answer in terms of radians). [2]

(f)

(i) Show that

$$\frac{d}{dx}\left(\frac{x}{a^2\sqrt{a^2 - x^2}}\right) = \frac{1}{\sqrt{(a^2 - x^2)^3}}$$

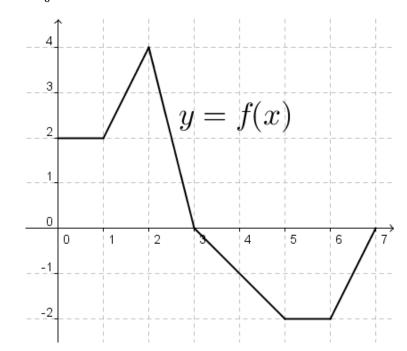
(ii) Hence evaluate

$$\int_0^2 \frac{dx}{\sqrt{(9-x^2)^3}}$$

(g) Prove that the polynomial

$$P(x) = x^{101} + x^{51} + x + 1$$

has neither a local maximum nor a local minimum.


[3]

End of Question 12

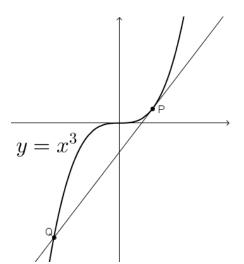
[4]

Start a new writing booklet for each Question in section II

Question 13 (23marks)

(a) Let $g(x) = \int_0^x f(t) dt$ where f(x) is the function whose graph is shown.

[6]


- (i) Evaluate g(1), g(3) and g(6).
- (ii) On what intervals is g(x) increasing?
- (iii)Where does g(x) have a maximum value?
- (iv)Sketch the graph of y = g(x).

(b) Let P be a point on the curve $y = x^3$ and suppose the tangent line at P intersects the curve again at Q. Prove that the slope at Q is four times the slope at P.

[4]

[4]

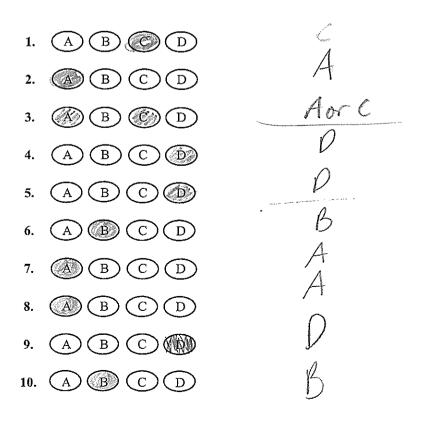
[6]

- (c) A square room with length and breadth 4 metres is 2.4 metres high. Calculate, to the nearest minute, the angle which a string line will make with the floor if it is stretched from the centre of the ceiling to one corner of the floor. [3]
- (d) Find the dimensions of the rectangle of largest area that can be inscribed in an equilateral triangle of side L if one side of the rectangle lies on the base of the triangle.
- (e) If $4\sin 2x + 2\cos 2x = \tan x$
 - (i) Prove that $\tan x$ is a root of the equation $t^3 + 2t^2 7t 2 = 0$.
 - (ii) Verify that t = 2 is one root and find the exact values of the others.
 - (iii)Hence solve, $4 \sin 2x + 2 \cos 2x = \tan x$ for $0^{\circ} < x < 360^{\circ}$, to the nearest degree.

End of Question 13

End of Exam

Student Number:_


Mathematics Extension Task 1 2012

SOLNS

		(B) 6 B 🌑	(C) 8 C 🔿	(D) 9 D 🔿	
ou have mad	e a mistake, pr	n a cross throu	gh the incorrec	t answer and fill in t	he
	Α 🜑	в 💓	сО	DO	
-		•			then
	А 💓			D 🔿	
	your mind a	A your mind and have crosse prect answer by writing the	A \bigcirc B \checkmark your mind and have crossed out what you prrect answer by writing the word correct an / correct	A \bullet B \checkmark C \bigcirc your mind and have crossed out what you consider to be prrect answer by writing the word correct and drawing an a / correct	your mind and have crossed out what you consider to be the correct answer, prect answer by writing the word correct and drawing an arrow as follows.

Section I: Multiple choice answer sheet.

Completely colour the cell representing your answer. Use black pen.

E.

(a) (1)
$$\int (5-2\pi + 6\pi) dx = 5\pi - \pi^{2} + 2\pi^{3} + c.$$

$$\begin{pmatrix} 4 \\ 1 \end{pmatrix} \int \sqrt[3]{x} dx = \int x^{\frac{1}{3}} dx$$

$$= \frac{x}{\frac{4}{3}} + C$$

$$= \frac{3}{\frac{4}{3}} + C \quad 0 \land 3x \sqrt[3]{x} + C$$

$$= \frac{3}{\frac{4}{3}} + C \quad 0 \land 3x \sqrt[3]{x} + C$$

$$= \frac{3}{\frac{4}{3}} + C \quad 0 \land 3x \sqrt[3]{x} + C$$

$$= \frac{3}{\frac{4}{3}} + \frac{x}{\frac{4}{3}} - 3x^{-5} + C$$

$$= \frac{1}{3} x^{-1} + \frac{x^{-4}}{-8} - \frac{3}{-5} + C$$

$$= \frac{1}{-5} x^{-1} + \frac{x^{-4}}{-8} - \frac{3}{-5} + C$$

$$= \frac{1}{-5} x^{-1} - \frac{1}{3} x^{-4} + \frac{2}{-5} x^{-5} + C$$

$$= \frac{1}{-5} x^{-1} - \frac{1}{3} x^{-4} + \frac{2}{-5} x^{-5} + C$$

$$= \frac{1}{-5} x^{-1} - \frac{1}{3} x^{-4} + \frac{2}{-5} x^{-5} + C$$

$$= \frac{1}{-5} x^{-1} - \frac{1}{3} x^{-4} + \frac{2}{-5} x^{-5} + C$$

$$= \frac{1}{-5} x^{-1} - \frac{1}{3} x^{-4} + \frac{2}{-5} x^{-5} + C$$

$$= \frac{1}{-5} x^{-1} - \frac{1}{3} x^{-4} + \frac{2}{-5} x^{-5} + C$$

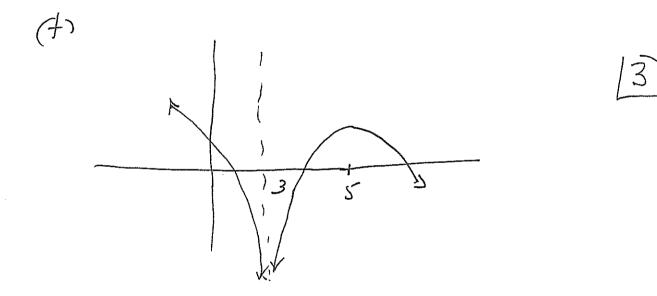
$$= \frac{1}{-5} x^{-5} - \frac{1}{-5} x^{-5} + C$$

(b) ()
$$\frac{4}{|x-1|} > 1$$

 $|x-1| < 4$
 $2 |x-1| < 4$
 $ie -4 < x - 1 < 4$
 $ie |-3 < x < 5 |x+1|$
 $(11) \frac{4}{|x-1|} > 1$
 $(2-1)^{2}$
 $4 > (2-1)^{2}$
 $\frac{-2 < x - 1 < 2}{|-1 < x < 3, x \neq 1|}$
 2

(c)
$$P_{(2)} = x^{3} - x^{-3}z - 1.$$

(i) $R_{-1} = -1 - 1 + 3 - 1$
 $z = 0.$
 $\therefore x + 1 is a factor.$
 $1 = -1 - 3 - 1$ [using hypethetic
 $-1 = \frac{1}{2} - \frac{2}{1}$ N Log driving]
 $\therefore x^{2} - 7x - 1$ is the other factor
 $\therefore P_{(x)} = (x + 1)(x^{2} - 7x - 1)$ [4]
 $y P_{(2)} = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1)$ [4]
 $y P_{(2)} = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{2} - 7x - 1) = 0$
 $(x + 1)(x^{$

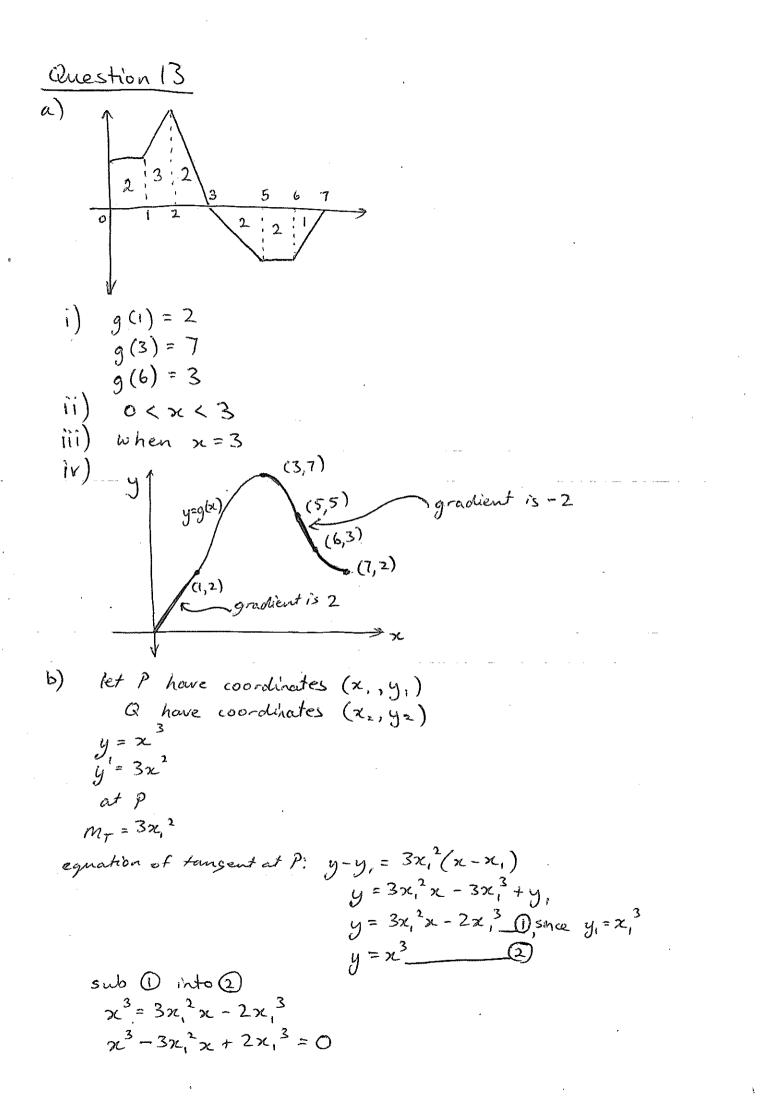

(e) have that
$$\frac{1-crite A}{1+crite A} = fan^{T}A$$
.

$$\frac{1+crite A}{1+crite A} = \frac{1-(1-2rite^{2}A)}{1+(2rr^{2}A-1)}$$

$$= \frac{2rite^{2}A}{2crite^{2}A}$$

$$= fan^{T}A$$

$$= Rrts$$



(c)
$$y = \chi^{4} - 6\chi^{2} - 8\chi + 1$$

 $y' = 4\chi^{2} - 12\chi - 8$
 $y'' = 0$ when
 $4\chi^{3} - 12\chi - 820$
 $\chi^{3} - 3\chi - 220$
 $\chi^{2} - 3\chi - 220$
 $\chi = 1, -1, 2/$
 $y = 4, -23$
(f) $\chi = 2, -3$
(f) $\chi = 2, -3$
(f) $\chi = 2\chi + 8$
(f) $\chi = -2, -3$
 $\chi = 2\chi + 8$
(f) $\chi = -2, -3$
 $\chi = -2, -3$
(f) $\chi = -2, -3$
 $\chi = -3, -3, -3$
 $\chi = -3, -3$
 $\chi = -$

() Cos2x=1/2 (2に=2のなきろ ル=n元土沢[2] nEZ (f) $(i) \frac{d}{d} \left(\frac{\pi}{\alpha^2 / \alpha^2 \pi^2} \right)$ $= \frac{1}{\alpha^{2}} \sqrt{a^{2} n^{2} \cdot 1 - x} \frac{1}{2\sqrt{a^{2} n^{2}}} (-2x)$ (a^2-n^2) $= \frac{1}{a^{2}} \left[\frac{(a^{2} - n^{2}) + n^{2}}{\sqrt{(a^{2} - n^{2})^{3}}} \right]$ = $\frac{1}{\sqrt{(a^2 - n^2)^3}}$ [2] Ces required. (i) $\int_{D}^{2} \frac{dx}{\sqrt{(a-h^2)^3}}$ $= \left[\frac{1}{9}\frac{2}{\sqrt{9-\kappa^{2}}}\right]^{2}$ = 4 [7 - 0] $= \frac{2}{qF}$ [2]

(9) P(x) = x10+x5+x+1 $P'(n) = 101n^{100} + 51n^{50} + 1$ >0 Yr : P(2) is monotonic - P (w) has no turning minering. pouts. [3]

. .

let rook be
$$x_1, x_1, x_2$$
 (sme tangent of $P(x_1, y_1)$)
 $x_1 + x_1 + x_2 = 0$
 $2x_1 + x_2 = 0$
 $x_2 = -2x_1$
gradient of tangent at $Q = 3(-2x_1)^2$
 $= 1/2x_1^2$
 $= 4(3x_1^{-2})$
 $= 4(3x_1^{-2})$
 $= 4(3x_1^{-2})$
 $= 4(3x_1^{-2})$
 $= 4 + \frac{4^{12}}{4^{12}} + \frac{4^{12}}{4^{12$

.

$$x = \frac{L}{4}$$

shee A"<0, Maximum area when $x = \frac{L}{4}$
Dimensions are $\frac{L}{2} \times \frac{\sqrt{3}L}{4}$
e)i) let $t = tanx$
 $\frac{1+t^{2}}{1+t^{2}} = t$
 $4sin 2x + 2cos 2x = tan x$
 $4\left(\frac{2t}{1+t^{2}}\right) + 2\left(\frac{1-t^{2}}{1+t^{2}}\right) = t$
 $8t + 2 - 2t^{2} = t + t^{3}$
 $t^{3} + 2c^{2} - 7t - 2 = 0$
ii) let $P(t) = t^{3} + 2t^{2} - 7t - 2$
 $P(2) = (2)^{3} + 2(2)^{2} - 7(2) - 2$
 $= 0$
 $t = 2$ is a root of $P(t) = 0$.
 $\frac{t^{2} + 4t + 1}{t^{2} - 2t^{2}}$
 $\frac{t^{2} - 2t^{2}}{-2t^{2}}$
 $\frac{t^{2} - 2t}{-2t^{2}}$
 $\frac{t^{2} - 2t}{-2t^{2}}$

- -

.

•

iii)
$$tan x = 2$$

 $tan x = 2$
 $x = 63^{\circ}, 243^{\circ}$
 $tan x = -2t\sqrt{3}$
 $tan x = -2t\sqrt{3}$
 $tan x = -2t\sqrt{3}$
 $tan x = -2t\sqrt{3}$
 $x = 165^{\circ}, 345^{\circ}$
 $tan x = -2-\sqrt{3}$
 $x = 165^{\circ}, 345^{\circ}$
 $tan x = -2-\sqrt{3}$
 tan

 $x = 63^{\circ}, 105^{\circ}, 165^{\circ}, 243^{\circ}, 285^{\circ}, 345^{\circ}$

.